TRAINING AROUND PAIN AND INJURIES

DON'T FOCUS ON THE PROBLEM, FIND THE SOLUTION

DANNY FOLEY
HEAD STRENGTH COACH (VHP)
MS. CSCS.D*. TSAC-F.D*

DISCLAIMER

- I am NOT a medical professional, and this is NOT a medical presentation. Thus, should NOT be used for diagnosis and/or treating injuries discussed.
 - I am not qualified/certified to diagnose, treat, or advise specific diagnosed medical conditions
- Just a strength coach talking to strength coaches
- Please consult with your physician and/or rehabilitative staff prior to implementing anything found or discussed in this presentation.

SOMECONTEXT

- Please recognize that I work under reasonably unique circumstances; including high training frequency/contact hours w/ my athletes.
- My athletes are also inherently injured, so some of my applications are a bit unorthodox by virtue.
- My work is typically focused on post-op, most of which is well after surgery.

EXAMINING BASICS

Image via: NOVA Active Rehab

SOMETERNS & SOMETIONS SOMETIONS

Discomfort Pain Injury

- **Discomfort**: Fatigue-based, undertrained.
 - Work through in training
- Pain: Mechanical disruption, impacts movement.
 - Avoid in training
- **Injury**: Diagnosable, tangible (to some extent)
 - ➤ Follow guidelines of Doc/PT
- <u>Conventional Rehab</u>: A technical and specific process that should be conducted by certified bodies such as physical therapists and athletic trainers.
- * Restorative Strength: Using strength training as a means to further rehabilitate injured sites with an emphasis on restoring foundational strength levels.

CLASSIFYING CLASSIFY CLASSIFY

Deficits

Incomplete movement

Address in training

Intolerances

Movement specific pain

Approach w/ caution or avoid entirely

- <u>Deficits</u>: Insufficient strength and/or incomplete movement patterns
 - Examples: End range hip flexion of 80°, incomplete upward rotation of scapula
 - > Should be emphasized and directly addressed in training
- Intolerance: Pain induced by specific movement patterns
 - Can also be dependent on position, stance, and/or unilateral
 - **Examples**: Trunk flexion, overhead flexion, big toe extension
 - Should be approached cautiously, and not agitated in training

• Your Goal:

- ➤ Be proficient in distinguishing between the two (Much of this is identified in the assessment)
- Address and progress the limitations safely and effectively

COMMORIES RY COMPONIO TONO RROUND

Shoulder injuries

- Impingement/tendonitis/bursitis
- SLAP tear
- Cuff tear

Back injuries

- Non-specific low-back pain (NSLBP)
- Disc injuries (bulging, compression, herniation, spondy)
- Surgeries (fusion, discectomy, implements)

Hip Injuries

- Impingement/FAI
- Labrum tear
- Arthritis

Knee injuries

- Tendonitis/bursitis
- Ligament tear
- Arthritis/Cartilage (meniscus)

Ankle/foot injuries

- Achilles tendinopathy/rupture
- Chronic sprains/Plantar fasciitis
- Toe injuries

Head/Cognitive Injuries

- Vestibular impairments
- Motor control
- Disrupted neuromuscular patterns

STRUCTURES

Tendons

- Respond best to load
- Aggravated most by speed of movement
- Elastic energy stores (stiffness & compliance)

Ligaments

- Respond best to full range movements
- Progressive load tolerance
- Resistance to torque/shearing forces

Muscles

- Respond best to load, full range
- Aggravated by load capacity; can be position specific
- Stress vs. strain, pliability vs. contractility

Bones

- Respond best to load
- Aggravated by force impact
- Density and tolerance

Nerves

- Respond best to speed and complexity
- Aggravated by system shock
- Think capacity and responsiveness

Fascia

- Respond best to force and dynamics
- Aggravated by numerous factors
- Think movement flow and continuity

HORMONSETO HORMONSETO RESPONSE (G.

Chart via: unm.edu

Нотионе	Stimulant for	Target Tissue	Response
	Release		
Epinephrine	Moderate to	Skeletal muscle	↑ Glycogenolysis
	intense exercise,		(breakdown of
	stress, hypotension		glycogen),
			vasoconstriction
Norepinephrine	Moderate to	Adipose tissue,	↑ lipolysis
	intense exercise,	liver	(breakdown of fat),
	hypoglycemia		† heart rate,
			↑ glycogenolysis
Growth Hormone	Exercise,	Skeletal tissue,	Stimulation of
(GH)	hypoglycemia	bone, adipose	growth, FFA
		tissue, liver	mobilization,
			† gluconeogenesis,
			↓ glucose uptake
Testosterone	↑ FSH,↑ LH,	Skeletal muscle,	Protein synthesis,
	exercise (?), stress	bone	sperm production, sex
			drive
Estrogen	↑ FSH, ↑ LH, light	Skeletal muscle,	Inhibition of glucose
	to moderate	adipose tissue	uptake, fat deposition
	exercise		
Cortisol	↑ ACTH, intense	Skeletal muscle,	↑ Gluconeogenesis,
	prolonged exercise	adipose tissue,	† protein synthesis,
		liver	↓ glucose uptake
Insulin-like growth	↑ Growth hormone	Almost all cells	Stimulation of growth
factor (IGF-1)			

FACTORS CONTRIBUTING TO PAIN AND INJURY

I. Basic anthropometrics and genetics

- Longer limbs, also limb ratios (including to torso)
- ➤ Bone densities, tendon insertions, nervous system function, etc.

2. General exposure to risk and physical demand

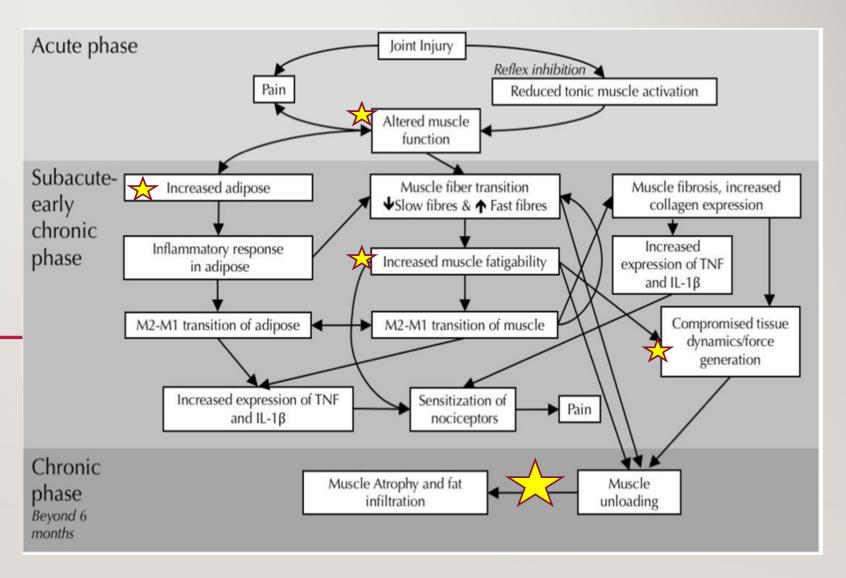
➤ Wear & tear and "Battle scars"

3. General health & wellness

> Hard to be bulletproof when you eat/sleep like shit

4. Strength ratio & balance

Consider biotensegrity model


5. Tissue quality

Look good, **feel** good, play good

6. Literally countless variables; focus on what you <u>can</u> control

JOINT INJURY PEFLEX CYCLE ph

Chart via: Medicalexhibits.com

PREDICTORS & SEMI-PREDICTORS OF INJURY

Predictors

- I. Injury history
- II. Task/sport demand and exposure

Semi-Predictors

- I. Resting/dynamic postures
- II. Tissue quality
 - ➤ Including fascia
 - > Too soft vs. too stiff
- III. Active vs. Passive ROM
 - Having access to ROM you can't own/control
- IV. Intolerances and deficiencies

PLAYING OUR PART

- Can we definitively prevent injury occurrence?
 - > No
- Can we reduce the likelihood of sustaining injury?
 - > Damn straight
 - Do the best you can with the resources you have and the time you're allotted.
 - Studying for a test doesn't ensure you'll pass, but it damn sure puts you in a better position to do so.

PRELIMINARY CONSIDERATIONS

BIG PICTURE

- If it causes pain, stay off it ("First, do no harm")
 - Our goal is to get them out of pain. There is no "pushing through"
 - > Don't confuse pain with discomfort
- Know your timeline, consider theoretical norms
 - Early phase rehab: 0-6 weeks
 - > Rehab-conventional: 2-10 weeks
 - > Restorative strength: Beyond 10 weeks (missing factor for most)
 - Theoretical norms (i.e. 130° of hip flexion) are good to use as loose guidelines to monitor progress, but don't live by them
- Monitor daily pain levels (subjective or otherwise)
- Know your boundaries, know your scope. MUST know your anatomy.
- Keep the athlete's goals in mind
 - You're always working towards something

VARIABLES
INFLUENCING
PAIN AND
INJURIES

General wellness/aerobic base

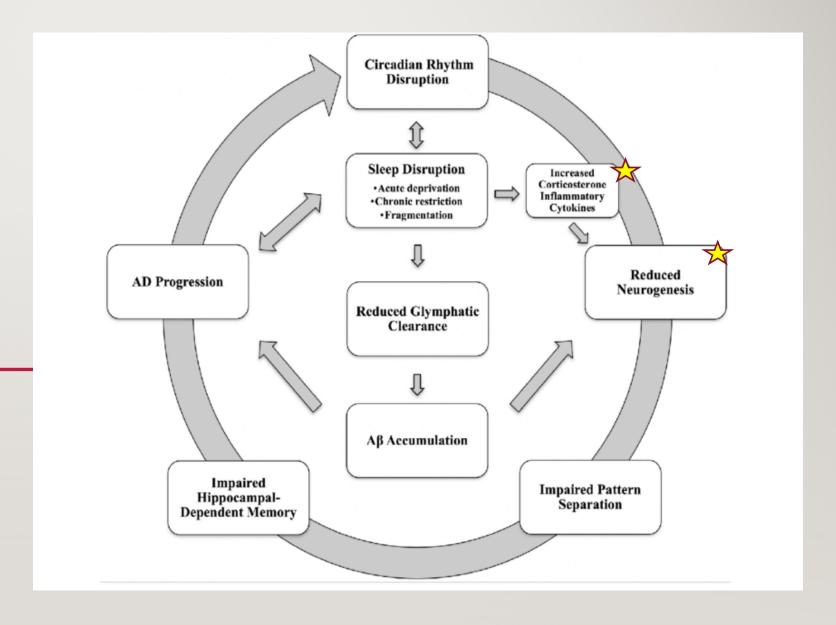
Sleep hygiene & nutrition panel

Medications/pain management

External modalities (professional network)

GENERAL WELLNESS & AEROBIC BASE

Aerobic baseline


- ➤RHR < 60 bpm (Boyle)
- >HRV and heart rate return
- ➤ Blood pressure (consider Valsalva)
- ➤ Stroke volume & Work capacity

General health and wellness

- High level athlete does not equal high level health
- > Relationship/marital stress
- Stress management and social wellness
- > Alcohol and narcotic use

DISRUPTION TO CIRCADIAN RHYTHIN

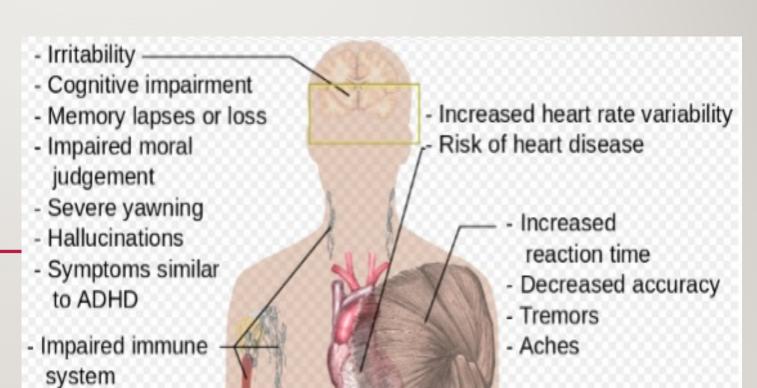
Image via: Science Direct

SLEEP HYGIENE AND NUTRITION PANEL

Sleep Hygiene and Routine

- Less than 7 hrs./night (prolonged) can be detrimental to health
- ➤ Blue light exposure
- Establishing basic but consistent nightly routine is step I

Nutrition Panel


- Don't assume high level athletes are healthy and well
- Can't out train a bad diet
- Does the nutrition intake meet the training demand?

Hydration

- ➤ I-I.5 L/day
- ➤ Micronutrient circulation
- ➤ Tissue quality

Image via: Wikimedia
Commons (accessed via reddit)

EFFECTS EX Antich agents Beta-antich

Chart via: ACSM

Drug Class	Examples Drugs Brand (Generic)	Heart Rate	Blood Pressure	Notes and Considerations
Diuretics	Hydrodiuril (hydrochlorothiazide)	←→	•	
Beta-blockers	Tenormin (atenolol)	Ψ	•	HR reductions are 10 to 30 BPM on average
	Lopressor (metoprolol)			
Calcium-channel blockers	Procardia (nifedipine)	↓ ←→	Ψ	Effect on HR depends on class of calcium-channel blocker used
	Cardizem (diltiazem)	•	•	
ACE inhibitors	Prinivil (lisinopril)	←→	•	
Lipid medications	Lipitor (atorvastatin), Zocor (simvastatin)	←→	←→	Notable exception is nicotinic acid, which may decrease BP
Analgesic agents	Advil (ibuprofen), Deltasone (prednisone), Celebrex (celecoxib)	←→	←→	
Anticholinergic agents	Spiriva (tiotropium), Atrovent (ipratropium)	•	←→	
Beta-agonists	Norepinephrine, amphetamine	↑←→	↑ ₩←→	Effects depend on formulation, dose, and length of use
Vasodilators	Nitrostat (nitroglycerin)	↑←→	•	
Antiarrhythmic agents	Betapace (sotalol), Lanoxin (digoxin)	•	↓←→	
Antidepressants	Paxil (paroxetine), Prozac (fluoxetine)	↑←→	↓←→	
Alcohol	٨	←→	↑←→	Potential increase in BP is linked to chronic use
Caffeine		↑←→	↑←→	Acutely may increase HR and BP; chronically has little impact on HR and BP
Nicotine		↑←→	↑	
Antihistamines	Zyrtec (cetirizine), Benadryl (diphenhydramine)	←→	←→	
Hypothyroid agents	Synthroid (levothyroxine)	←→	↓ ←→	Decreased BP occurs in about half of patients
Weight loss agents	Alli or Xenical (orlistat), Qsymia (phentermine/topiramate)	↑←→	↑←→	Increased HR and BP occur with the use of weight loss agents that are stimulants

EXTERNAL MODALITIES

External modalities/referring out

- ➤ Develop your professional network
- ▶Is there a demand?

Some common examples

- Soft tissue therapy (deep tissue massage, dry needling, cupping)
- Physical therapy/athletic training staff
- ➤ Chiropractic
- **►** Nutritionist
- ➤ Cardiologist

GROUND ZERO

RESTORATIVE STRENGTH

- Restorative strength: Address/improve the areas of weakness & deficiencies, without compromising strengths or performance.
 - ➤ Has kind of become my "niche" so to speak
 - > A delicate balance in some cases
- Band accommodation
 - Assist/unload/feed movement patterns (https://youtu.be/oPKFHZP39wM)
- Foot position/stance
- Hand grip/position
- Basic to complex spectrum (think LAYERS)
- Building robustness/durability (think RESILIENCY)

Intake Interview: Injury & training history

Static Assessment: Identifying loose structure and relationships

<u>Table Assessment</u>: Identifying boundaries, intolerances & deficiencies

Dynamic Assessment: Observing how the athlete moves organically (how everything seams together)

<u>Planning your Approach</u>: Putting together actionable steps for tangible improvement.

~PLANNING THE APPROACH~

- Sport specific training = Demands of sport + weaknesses and deficiencies identified
- THE ATHLETE LITERALLY GIVES YOU THE ANSWERS TO THE TEST!!
 - > Deficiencies vs intolerances
 - > Attack what's weak, avoid what's injured
 - Start with general, work to specific
 - > Start with basic, work to complex

~SOME COMMON ITEMS FOR ME~

Primary Items to Address:			
	-Restoring full active flexion ROM		
SLAP repair	-OH shoulder stability & strength		
SLAI Tepan	-Clean up accompanying scapular movement		
	-Restore (humeral) internal/external rotation.		
	-Decreasing chronic low-back pain		
	-Expanding movement capacity		
Lumbar compressions	-Improving core strength (emphasis on		
	anterior & lateral) and durability.		
	-Improve strength/function of psoas		
	-Decreasing chronic elbow pain.		
Ulnar nerve pain	-Improve hand/grip strength & endurance.		
e mar nerve pam	-Work dexterity (up to tolerance)		
	-Soft tissue where needed		
	-Reduce presence of muscular guarding		
	during gait.		
Disrupted gait, poor resting/working	-Clean up foot pattern (significant medial		
posture	drop) by strengthening lower leg/hip		
	-Address non-functional asymmetries where		
	needed.		
	-Include cognitive task work with gradient		
	complexity in warm-up.		
General motor control, vestibular &	-Improve movement capacity spectrum by		
proprioceptive function	including variety of primitive patterns.		
	-Include vestibular/proprioceptive drills		
	throughout week.		

~DIRECT PLANNING~

Assessment Observation	Training Strategy		
Arm <u>drop</u> in shoulder	-Work to elevate right shoulder girdle by		
→Likely result of immobilization from SLAP	strengthening upper trap		
→Excessive hand internal rotation likely due	-Strengthen external rotators (cuff muscles) to		
to reattachment being overly taught	amend excessive internal rotation		
Elevation of right side of rib cage	-Include soft tissue work on internal rotators		
→ Likely due to muscular guarding for injured	(pec minor/lat) and strengthen ipsilateral		
shoulder	oblique muscles to reset rib cage position		
OH flexion deficit in right arm	-Introduce OH Movement concepts in weeks		
→Right side has ~3/4 ROM compared to left,	1 & 2, add external load as progress is shown.		
can get to end-range passively w/o pain	-Would likely benefit from perturbations and		
	oscillatory methods.		
Posture during OH flexion	-Strengthen the serratus & anterior core		
→ Forward head posture + rib flare + anterior	muscles, heavy emphasis on posture		
pelvic tilt + hyperextended knees	mechanics on movement.		
→Could be natural resting posture that's been	-Strengthen neck retractors, soft tissue deep		
exacerbated by injury/lack of activity.	cervical flexors, be conscious of cueing head		
	position during movement.		
Excessive overpronation during SL balance	-Soft tissue work on arches (up to tolerance)		
→ Could be consequential of plantar fasciitis	and work to strengthen foot muscles		
history, or weak intrinsic foot muscles	-Will likely do most training w/o shoes		

~BENEFITS OF SL WORK~

- Triplanar stability (hip)
- Improved socket congruency
- Unilateral hip function (think about SIJ)
- Improved intrinsic foot strength

VIDEO COMPILATION
OF SL WORK

https://youtu.be/yKzTNR g0-LM

~BENEFITS OF SA WORK~

- Allows joint to work for itself
- Highly beneficial for ribcage
- Increased demand for core/pillar
- Bracing stability mechanics

VIDEO COMP OF SA WORK

https://youtu.be/JGcWkc F3eEg

~BENEFITS OF CONTRALATERAL WORK~

- Increased demand for motor control
- Increased demand for fascial slings
 - > Think about LBP stability
- Demand for proprioception and coordination

VIDEO COMPILATION OF CONTRALATERAL WORK

https://youtu.be/o9CsKjf pSTw

~BENEFITS OF OSCILLATORY WORK~

- Increased neuromuscular demand
- Intermuscular coordination
 - ➤ Motor unit synchronization
 - > Inhibition/disinhibition
- Intramuscular coordination
 - ➤ Rate coding

VIDEO COMPILATION
OF OSCILLATORY
WORK

https://youtu.be/d51OM-WC5s4

~BENEFITS OF OFFSET WORK~

- Increased neuromuscular demand
- Increased demand for core
 - "Only as strong as weakest link"
- Multiplanar stimulus

VIDEO COMPILATION OF OFFSET WORK

https://youtu.be/zNpAn0 VSA-M

MODIFYING MOVEMENTS

MODIFYING MOVEMENTS

- Remove what doesn't fit
 - No exercise or movement is inherent, reiterate "what can they do and what do they **NEED**"
- Path of motion first, range of motion second
 - > Own what you have, build from there
- Create stability before you find it
 - The body will find a way, we want the right way
- Create necessary boundaries and barriers
 - ➤ Points of contact/stability
 - Give them what they need
- Don't be afraid to get crafty
 - > Your job as the coach is to put your athletes in the best position to succeed.

EXAMPLE I: MODIFYING THE BACK SQUAT

Common injuries precluding athletes from back squats

- > Spinal injury/surgery (intolerant to axial compression); or trunk flexion intolerance
- > Shoulder injuries- inability to externally rotate to support barbell
- ➤ Hip injuries- flexion intolerance, groin/adductor injuries
- Knee injuries- ACL or meniscus?...There's a difference in protocol
- ➤ Ankles/feet- inability to dorsiflex or stabilize the foot

Simple adjustments

- Change the bar position (i.e. going to a front squat or high vs. low bar)
- Change the implement (i.e. switching to safety bar, dumbbell, belt squat)
- Change stance/set-up (i.e. wider/narrower, split squat, box squat, Hatfield, band assisted squat)
- Modify ROM (including elevating heels)

Some things I've noticed

- Spinal injury history = no back squats
- Most shoulder injuries can be accommodated by switching to safety bar/Hatfield
- > Hip injuries can be difficult and highly variable (ROM matters)
- For ACL injuries, avoid high load partial squats; for meniscus, avoid heavy deep ROM
- > Dorsiflexion impairment can have sweeping effects, start with heel lift

EXAMPLE I: MODIFYING THE BACK SQUAT

Common Items to Observe & Address

Increased trunk flexion

Increases demand on erectors, and hip flexors but reduces demand for knee flexion.

More upright torso

Increases demand on knee flexion but spares lumbar and hips.

Wider foot position

- Reduces demand for hip IR and knee flexion
- Increases demand for quads and glutes

Foot rotation

Increased rotation decreases demand for dorsiflexion

Back Squat Modality Video

https://youtu.be/hiSAi Hl4eyk

EXAMPLE 2: MODIFYING THE BENCH PRESS

Common injuries precluding athletes from bench press

- Spinal injury/surgery (i.e. intolerant to lumbar extension)
- Shoulder injuries- major limiting joint for bench press
- > SLAP tear- excessive humeral extension and anterior glide, lacking stability
- Cuff tears- limited external rotation, over dominant traps!
- Elbow/wrist/hand- elbows and wrists can be tricky...

Simple adjustments

- Change the hand position (i.e. going to wider or narrower grip)
- Change the implement (i.e. switching to Swiss bar, dumbbells)
- Change stance/set-up (i.e. floor press, Thompson fat pad, band unloaded)
- Modify ROM (going to a block style set-up)

Some things I've noticed

- For spinal injuries, elevating feet alleviates most issues
- ➤ MOST (not all) SLAP and cuff tears = no barbell bench press
- Most shoulder injuries can be accommodated by switching to dumbbells
- Block bench is good option to prevent excessive anterior humeral glide and hyperextension
- Elbows/wrists can be relieved by dumbbells, but sometimes this is a true limiting factor
- Very few know how to utilize lats for pressing action**

EXAMPLE 2: MODIFYING THE BENCH PRESS

Common Items to Observe & Address

Increased trunk flexion

Increases demand on erectors, and hip flexors but reduces demand for knee flexion.

More upright torso

Increases demand on knee flexion but spares lumbar and hips.

Wider foot position

- > Reduces demand for hip IR and knee flexion
- > Increases demand for quads and glutes

Foot rotation

- Increased rotation decreases demand for dorsiflexion and hip ER
- > Decreases demand on hip internal rotators

Press Modality Video

https://youtu.be/E V6wH47qB-k

EXAMPLE 3: MODIFYING THE DEADLIFT

Common injuries precluding athletes from deadlifts

- > Spinal injury/surgery (i.e. intolerant to lumbar flexion or thoracic injuries)
- ➤ Hip injuries (i.e. groin/adductor tear, glute tear, or quad/hamstring injuries)
- ➤ Knee injuries (i.e. ligament tear, patellar tendinopathy, cartilage decrements)

Simple adjustments

- Change the surface (i.e. pulling from blocks or elevated surface)
- Change the implement (i.e. switching to Hex bar, suspended dumbbell/kettlebell)
- Change stance/set-up (i.e. wider vs narrower stance, modifying torso position)

Some things I've noticed

- For MOST (not all) spinal injuries, barbell deadlift from the floor is a no-go
- Elevating the surface cleans up a lot of issues
- Switching to hex bar has cleaned up a lot of issues (for my population, at least)
- Reduced ROM is likely best option for knees
- Torso inclination (or lack thereof) is major variable for hip and low back population

EXAMPLE 3: MODIFYING THE DEADLIFT

Common Items to Observe & Address

Increased trunk flexion

Increases demand on erectors, and hip flexors but reduces demand for knee flexion.

More upright torso

Increases demand on knee flexion but spares lumbar and hips.

Wider foot position

- Reduces demand for hip IR and knee flexion
- > Increases demand for quads and glutes

Foot rotation

- Increased rotation decreases demand for dorsiflexion
- > Decreases demand on adductors

Deadlift Modality Video

https://youtu.be/ZSeC8

SO WHAT DO WE NOTICE...

I.) Change stance, position

- -Foot/hand placement -Reduced ROM
- -Trunk/torso position

2.) Change the implement

-Barbell to hex/swiss/safety

-Using DB's/KB's

5.) Create barriers where needed

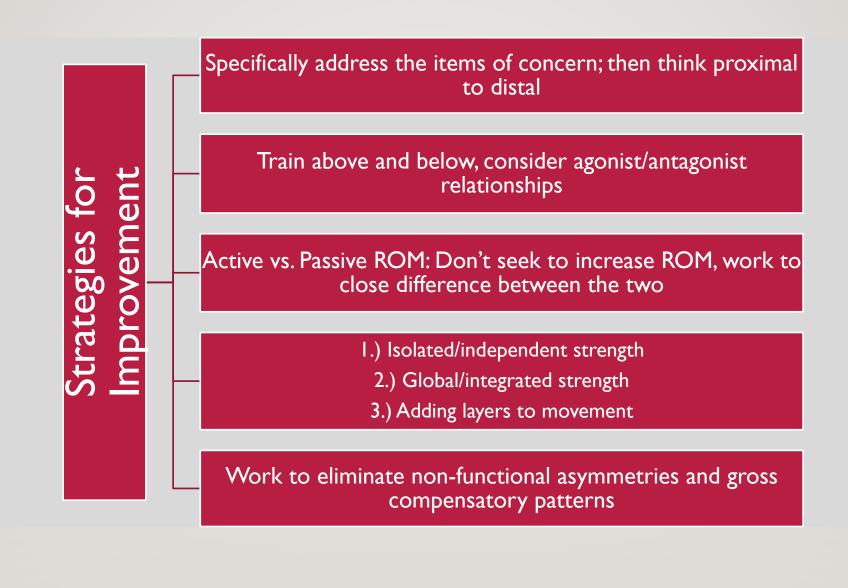
-Highly variable, multiple factors to consider

-Good example being block bench or box squat

3.) Path of motion first, ROM second

-Control what you own

-Consider progressing ROM like external load


4.) Band assisted/unloaded

- -Help introduce new ROM's
- -Use for difficult or painful change of direction
 - -Neuro adaptations?

STRATEGIES FOR IMPROVEMENT

SPECIFICALLY ADDRESS THE ITEMS OF CONCERN; THEN THINK PROXIMAL TO DISTAL

Prioritize their priorities (keeping the goal the goal)

- If someone comes to you with an elbow injury, treat the elbow!'
- ➤ You must demonstrate interest and emphasis

Proximal to distal

- Consider the nervous system
- > All human movement involves the spinal cord

Avoid chasing pain

> Paralysis by analysis

TRAIN ABOVE AND BELOW, CONSIDER AGONIST/ ANTAGONIST RELATIONSHIPS

Above and below

In some ways, this builds from proximal-to-distal theory

Agonist/antagonist relationship

- Sherrington's Law of reciprocal inhibition (not always so simple!)
- ➤ Locked long vs locked short

Shoulder example

- Consider tension of anterior neck muscles, and effect that has on collarbone position, which then affects the shoulder joint itself
- Consider the laxity of the elbow, and if limitations could be correlated to shoulder function
- ➤ Lat/trap balance (BIG ONE!)
- ➤ Bicep/triceps balance

ACTIVEVS. PASSIVE ROM

What's the goal here?

- The preliminary goal is **NOT** to increase ROM, which can be damming for some athletes
- > The goal **IS** to close the gap between active and passive ranges
- Smaller gap = less likely to sustain injury (according to logic)
- > Once the gap is narrowed, then we can work to increase total ROM

Common example

- ➤ Hip internal rotation: Right: 15° (passive) 5° (active) Left: 20° (passive) 15° (active)
- Instead of trying to increase total passive ROM (which according to theoretical norms would be needed), work to close the gap on the right hip first.
- ➤ Once established, then look to increase internal rotation on both hips to meet theoretical values (~30°)
- Take note of how this affects hip external rotation, flexion, and extension

STAGES OF PROGRESSING MOVEMENT

I. Isolated/Independent Strength

- Identify what's independently weak through manual muscle testing during assessment
- Work to develop foundational localized strength
- Here we're thinking basic, foundational strength applications (single-joint, uniplanar, up to tolerance)

2. Global/Integrated Strength

- Once independent strength has been attained, challenge the system in a more complete fashion (i.e. going from a quad extension to partial squat)
- > Be sure to monitor any compensation patterns or aberrant movement

3. Layering Movement

- Once integrated strength is established, look to challenge the system in a more complex/demanding nature. This can include a host of variables, but my preferred options are:
 - Adding tempos
 - Blending cardinal planes (offset band)
 - Adding perturbations, oscillatory loading, and combination movements

WORK TO ELIMINATE NONFUNCTIONAL ASYMMETRIES AND COMPENSATORY PATTERNS

Functional vs. Non-Functional Asymmetries

- EVERYONE has muscular imbalances...These are not inherently items to "fix" or address
- Functional Asymmetry: A noticeable muscular difference bilaterally, used to create competitive advantage in sport/duty. (i.e. shoulder difference in a college baseball pitcher)
- Non-Functional Asymmetry: An egregious imbalance bilaterally that does not provide competitive advantage in sport. (I.e. 12 mm difference in L/R hip height).
- > Big part of the driving force for my application of core training

Compensatory Patterns

- Another one that can be tricky... a big misnomer in my realm is protective tension (i.e. guarding the scaps with the traps)
- Investigate what doesn't look right, but don't assume everything is problematic

BRINGING IT ALL TOGETHER

GENERAL GUIDELINES

AREA OF CONCERN	INCLUDE	AVOID
Shoulder ~Impingement~ ~SLAP~ ~CUFF~	-Independent strength for area -Oscillatory and perturbation work -Restoring scapular ROM and scap:humeral rhythm -Improve inner back strength -Restore humeral ext. rotation	-OH flexion beyond tolerance -Deep ranges of humeral extension -Contributing to established compensatory patterns (i.e. traps guarding scaps)
Spine ~NSLBP~ ~Disk herniation~ ~Surgical procedures~	-Improve anterior core strength-Increase multiplanar capacity-Hamstring strength/ extensibility-Breathing mechanics/function	-Compressive axial loading -Excessive trunk flexion/extension -Prone position (case specific) -Heavy/prolonged isometric loading
Hips ~Impingement/FAI~ ~Labrum tear~ ~Groin/adductor strain/tear~	-SL movements to improve unilateral hip function -Improve glute strength (*frontal plane) -Hamstring/quad balance -Don't forget about adductors!	-Deep ranges of hip flexion (particularly under load) -Contributing to bad or faulty patterns (i.e. lateral shift, unilateral hike) -Anything inducing pain

GENERAL GUIDELINES

AREA OF CONCERN	INCLUDE	AVOID
Knees ~Tendonitis (quad, patellar, ITB)~ ~Ligament sprains/tears~ ~Degenerative cartilage~	-Single leg work for triplanar stability; think about screw-home mechanism -Appropriate balance of quad:ham -Strengthening the quad muscles w/ variation -Strengthen lateral glute muscles -Eccentrically strengthen hamstrings	-Flexion angles that induce pain <40 for ACL >90 for meniscus/cartilage -Repetitive hi force/ground contact "jogging" -Deeper angles of dorsiflexion under velocity
Ankles/Feet ~Achilles strain/rupture~ ~Plantar fasciitis~ ~Toe injury (toe turf)~	-As much work out of shoes as possible (nothing w/ force impact) -Soft tissue work on plantar/calf -Isometric foot strength (closing gap, floating heel) -Increase controlled dorsi. under load	-For achilles rupture, be very mindful of load & velocity of movement -Excessive movements requiring big toe extension -DO NOT IRITATE PLANTAR!
Chronic/Global -No specific diagnosis, but not rightGenerally don't move wellJust fat & out of shape	 -A shit ton of variety -Anything that helps subjective pain! Don't buy the backlash on this, nothing wrong w/ placebo -Things that reduce the intimidation factor of training 	-Anything that induces pain -Anything that validates fear or intimidation, demotes self confidence -Setting athlete up for failure

MAIN TAKEAWAY POINTS

- Don't focus on the problem, find the solution
 - Can very much be a trial and error process
 - Micro progressions and constant goal setting
- Restorative strength
 - Rehab + performance training
 - Finding the weak links
- Consider multiple factors needed
 - All systems are in play and need to be considered
 - Don't be afraid to network/refer out

- Wellness is essential
 - Consider aerobic base
 - Multiple stressors, one pool
 - Lacking good health will sig perturb rehab timeline
- Everything starts with the assessment
 - Let them show you what they need
- Wide spectrum of movement and stimulus
 - ➤ Different tissues/systems respond differently
- Modify what's needed, scrap what doesn't fit
 - Ok to think outside of box

THANK YOU FOR YOUR TIME! I HOPE YOU WERE ABLE TO GET SOMETHING OUT OF THIS.

PLEASE BE SMART, AND STAY
SAFE DURING THESE TIMES OF
UNCERTAINTY

TWITTER/IG:

@DANMODE_VHI

YOUTUBE:

RUDE ROCK STRENGTH

WEBSITE:

RUDEROCKSTRENGTH.COM